SAR Target Recognition via Joint Sparse and Dense Representation of Monogenic Signal
نویسندگان
چکیده
منابع مشابه
SAR target recognition based on improved joint sparse representation
In this paper, a SAR target recognition method is proposed based on the improved joint sparse representation (IJSR) model. The IJSR model can effectively combine multiple-view SAR images from the same physical target to improve the recognition performance. The classification process contains two stages. Convex relaxation is used to obtain support sample candidates with the l1-norm minimization ...
متن کاملSAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature
Automatic target recognition (ATR) in synthetic aperture radar (SAR) images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a hist...
متن کاملSAR Target Recognition via Local Sparse Representation of Multi-Manifold Regularized Low-Rank Approximation
The extraction of a valuable set of features and the design of a discriminative classifier are crucial for target recognition in SAR image. Although various features and classifiers have been proposed over the years, target recognition under extended operating conditions (EOCs) is still a challenging problem, e.g., target with configuration variation, different capture orientations, and articul...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملDecision fusion of sparse representation and support vector machine for SAR image target recognition
We propose a decision fusion method of Sparse Representation (SR) and Support Vector Machine (SVM) for Synthetic Aperture Radar (SAR) image target recognition in this paper. First, a fast SR classifier (FSRC) with Matching Pursuit (MP) solution is proposed. In the FSR-C, the dictionary is composed of training images. Just one nonzero element in SR coefficient of the testing image is found out b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2019
ISSN: 2072-4292
DOI: 10.3390/rs11222676